organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

L-Argininium ethyl sulfate

Harutyun A. Karapetyan

Molecule Structure Research Center, National Academy of Sciences RA, Azatutyan ave. 26, 375014 Yerevan, Republic of Armenia Correspondence e-mail: harkar@nfsat.am

Received 29 August 2008: accepted 17 September 2008

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.006 Å; R factor = 0.072; wR factor = 0.203; data-to-parameter ratio = 23.8.

The title compound, $C_6H_{15}N_4O_2^+ \cdot C_2H_5O_4S^-$, exhibits nonlinear optical properties. An extensive hydrogen-bonding network $[N \cdots O = 2.786 (4) - 3.196 (5) \text{ Å}]$ links cations and anions into a three-dimensional structure.

Related literature

For crystal structures and nonlinear optical properties of related compounds, see: Monaco et al. (1987); Petrosyan et al. (2000). For details of the synthesis, see: Petrosyan (2005).

Experimental

Crystal data

 $C_6H_{15}N_4O_2^+ \cdot C_2H_5O_4S^ M_r = 300.34$ Orthorhombic, P212121 a = 9.1504 (18) Å b = 12.519 (3) Å c = 12.551 (3) Å

V = 1437.8 (5) Å³ Z = 4Mo $K\alpha$ radiation $\mu = 0.25 \text{ mm}^{-1}$ T = 293 (2) K $0.26 \times 0.22 \times 0.14 \text{ mm}$

Data collection

Enraf-Nonius CAD-4 diffractometer

Absorption correction: none 4566 measured reflections

4171 independent reflections 3091 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.061$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.071$	$\Delta \rho_{\rm max} = 0.74 \ {\rm e} \ {\rm \AA}^{-3}$
$wR(F^2) = 0.202$	$\Delta \rho_{\rm min} = -0.59 \ {\rm e} \ {\rm \AA}^{-3}$
S = 1.03	Absolute structure: Flack (1983),
4171 reflections	1775 Friedel pairs
175 parameters	Flack parameter: 0.05 (16)
H-atom parameters constrained	

3 standard reflections

every 400 reflections

intensity decay: none

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N1 - H1B \cdots O5$	0.89	1.94	2.823 (5)	173
$N1 - H1C \cdot \cdot \cdot O6^{i}$	0.89	2.01	2.896 (4)	172
$N1 - H1A \cdots O1^{ii}$	0.89	1.97	2.786 (4)	152
$N2-H2\cdots O3^{iii}$	0.86	2.25	3.098 (6)	170
$N3-H3B\cdots O6^{iii}$	0.86	2.35	3.196 (5)	167
$N3-H3A\cdots O2^{iv}$	0.86	1.93	2.771 (4)	165
$N4-H4B\cdotsO1^{iv}$	0.86	2.00	2.847 (4)	170
N4–H4 A ···O4 ⁱⁱ	0.86	2.11	2.945 (5)	165

Symmetry codes: (i) $-x + \frac{1}{2}, -y + 2, z - \frac{1}{2}$; (ii) $x + \frac{1}{2}, -y + \frac{3}{2}, -z + 1$; (iii) $x - \frac{1}{2}, -y + \frac{3}{2}, -z + 1$; (iv) $-x + \frac{1}{2}, -y + 1, z - \frac{1}{2}$

Data collection: DATCOL in CAD-4 Manual (Enraf-Nonius, 1988); cell refinement: LS in CAD-4 Manual; data reduction: HELENA (Spek, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

The author expresses his thanks to Dr A. M. Petrosyan for providing the crystals and for valuable discussion of the results. This work was supported by US CRDF grant No. AE2-2533-YE-03.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2443).

References

Enraf-Nonius (1988). CAD-4 Manual. Enraf-Nonius, Delft, The Netherlands. Flack, H. D. (1983). Acta Cryst. A39, 876-881.

Monaco, S. B., Davis, L. E., Velsko, S. P., Wang, F. T., Eimerl, D. & Zalkin, A. (1987). J. Cryst. Growth, 85, 252-257.

Petrosyan, A. M. (2005). Proceedings of Conference on Laser Physics 2005, 11-14 October 2005, Ashtarak, Armenia, pp. 123-126.

Petrosyan, A. M., Sukiasyan, R. P., Karapetyan, H. A., Terzyan, S. S. & Feigelson, R. S. (2000). J. Cryst. Growth, 213, 103-257.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Spek, A. L. (1997). HELENA. University of Utrecht, The Netherlands.

Acta Cryst. (2008). E64, o1982 [doi:10.1107/S1600536808029954]

L-Argininium ethyl sulfate

H. A. Karapetyan

Comment

In a search of analogs of the L-arginine phosphate (LAP) a large number of new materials [Monaco *et al.*, 1987, Petrosyan *et al.*, 2000] have been obtained by the interaction of L-arginine with various acids by choosing appropriate conditions. The crystals from the interaction of L-arginine with H_2SO_4 could not be obtained due to extremely high solubility of reaction product (Petrosyan, 2005). Nevertheless, the conditions for obtaining the crystals of L-arginine salt with ethylsulforic acid were found (Petrosyan, 2005).

We present herein a structural study of the L-argininium ethylsulfate, $C_6H_{15}N_4O_2^+$, $C_2H_5O_4S^-$, (I). A view of the asymmetric unit is shown in Fig. 1. The geometric parameters found in (I) are in a good agreement with the common accepted values. In the crystal, all eight active H atoms are involved in hydrogen bonding (Table 1), which link the kations and anions into three-dimensional structure.

Experimental

The single crystals of (I) were obtained by slow evaporation of the aqueous solution of exchange reaction product described by Petrosyan (2005):

 $L\text{-}Arg \times HBF_4 + KC_2H_5SO_4 \rightarrow L\text{-}Arg \times HC_2H_5SO_4 + KBF_4.$

Refinement

All H atoms were placed in geometrically calculated positions (C—H 0.96-0.98 Å, N—H 0.86-0.89 Å) and included in the refinement in a riding model approximation, with $U_{iso}(H)=1.5U_{eq}$ (of Me- and N⁺H₃ groups) and $1.2U_{eq}$ (other carrier atoms). High values of U_{eq} of some ethylsulforic anion atoms, except S, as compared to the other atoms of the structure, demonstrate potential thermal motion (rotation) of this group around the relatively heavy S atom.

Figures

Fig. 1. A perspective view of the asymmetric unit of (I) showing the atomic numbering and displacement ellipsoids at the 50% probability level.

L-Argininium ethyl sulfate

Crystal data

 $C_{6}H_{15}N_{4}O_{2}^{+}C_{2}H_{5}O_{4}S^{-}$ $M_{r} = 300.34$ Orthorhombic, $P2_{1}2_{1}2_{1}$ Hall symbol: P 2ac 2ab a = 9.1504 (18) Å b = 12.519 (3) Å c = 12.551 (3) Å V = 1437.8 (5) Å³ Z = 4

Data collection

Enraf–Nonius CAD-4 diffractometer	$R_{\rm int} = 0.062$
Radiation source: fine-focus sealed tube	$\theta_{\text{max}} = 30.0^{\circ}$
Monochromator: graphite	$\theta_{\min} = 2.3^{\circ}$
T = 293(2) K	$h = 0 \rightarrow 12$
$\omega/2\theta$ scans	$k = 0 \rightarrow 17$
Absorption correction: none	$l = -17 \rightarrow 17$
4566 measured reflections	3 standard reflections
4171 independent reflections	every 400 reflections
3091 reflections with $I > 2\sigma(I)$	intensity decay: none

Refinement

Refinement on F^2	H-atom parameters constrained
Least-squares matrix: full	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0927P)^{2} + 1.2922P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
$R[F^2 > 2\sigma(F^2)] = 0.072$	$(\Delta/\sigma)_{max} < 0.001$
$wR(F^2) = 0.202$	$\Delta \rho_{max} = 0.74 \text{ e} \text{ Å}^{-3}$
<i>S</i> = 1.03	$\Delta \rho_{\rm min} = -0.59 \text{ e } \text{\AA}^{-3}$
4171 reflections	Extinction correction: SHELXL97 (Sheldrick, 2008), $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
175 parameters	Extinction coefficient: 0.007 (2)
Primary atom site location: structure-invariant direct methods	Absolute structure: Flack (1983), 1775 Friedel pairs
Secondary atom site location: difference Fourier map	Flack parameter: 0.05 (16)
Hydrogen site location: inferred from neighbouring sites	

 $F_{000} = 640$ $D_x = 1.387 \text{ Mg m}^{-3}$ Mo Ka radiation $\lambda = 0.71073 \text{ Å}$ Cell parameters from 24 reflections $\theta = 14-16^{\circ}$ $\mu = 0.25 \text{ mm}^{-1}$ T = 293 (2) KBlock, colourless $0.26 \times 0.22 \times 0.14 \text{ mm}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
S1	0.23564 (11)	0.86276 (9)	0.82316 (10)	0.0575 (3)
01	0.1060 (2)	0.6386 (2)	0.5342 (2)	0.0447 (6)
O2	0.3427 (3)	0.6749 (2)	0.5555 (3)	0.0541 (8)
O3	0.3324 (5)	0.7594 (3)	0.8318 (5)	0.126 (2)
O4	0.0977 (4)	0.8395 (4)	0.7810 (5)	0.114 (2)
O5	0.3241 (6)	0.9208 (6)	0.7447 (3)	0.126 (2)
O6	0.2501 (5)	0.9140 (2)	0.9236 (3)	0.0755 (11)
N1	0.3133 (3)	0.8825 (2)	0.5232 (2)	0.0331 (5)
H1A	0.3969	0.8533	0.5017	0.050*
H1B	0.3140	0.8890	0.5938	0.050*
H1C	0.3032	0.9467	0.4937	0.050*
N2	0.1657 (4)	0.7002 (3)	0.1525 (2)	0.0450 (7)
H2	0.0751	0.7186	0.1518	0.054*
N3	0.0934 (4)	0.5395 (3)	0.0841 (3)	0.0531 (9)
H3A	0.1139	0.4759	0.0629	0.064*
H3B	0.0051	0.5627	0.0803	0.064*
N4	0.3325 (4)	0.5638 (3)	0.1274 (3)	0.0519 (9)
H4A	0.4024	0.6035	0.1505	0.062*
H4B	0.3503	0.4994	0.1074	0.062*
C1	0.2151 (3)	0.6992 (3)	0.5313 (3)	0.0340 (6)
C2	0.1889 (3)	0.8130 (2)	0.4905 (2)	0.0296 (6)
H1	0.0993	0.8406	0.5233	0.036*
C3	0.1696 (3)	0.8141 (3)	0.3697 (2)	0.0332 (6)
H3C	0.0883	0.7678	0.3515	0.040*
H3D	0.1437	0.8860	0.3479	0.040*
C4	0.3030 (4)	0.7788 (3)	0.3057 (3)	0.0392 (7)
H4C	0.3842	0.8262	0.3209	0.047*
H4D	0.3309	0.7072	0.3272	0.047*
C5	0.2713 (4)	0.7799 (3)	0.1865 (3)	0.0408 (7)
H5A	0.2353	0.8501	0.1670	0.049*
H5B	0.3621	0.7683	0.1483	0.049*
C6	0.1980 (4)	0.6018 (3)	0.1226 (3)	0.0400 (8)
C7	0.2636 (9)	0.6578 (5)	0.8418 (6)	0.100 (2)

H7A	0.2037	0.6434	0.7797	0.120*
H7B	0.2012	0.6567	0.9043	0.120*
C8	0.3784 (9)	0.5765 (5)	0.8517 (5)	0.098 (2)
H8A	0.4249	0.5665	0.7838	0.147*
H8B	0.3359	0.5103	0.8747	0.147*
H8C	0.4496	0.5996	0.9029	0.147*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	0.0378 (5)	0.0573 (6)	0.0773 (7)	0.0002 (4)	0.0002 (4)	-0.0298 (5)
01	0.0284 (11)	0.0372 (12)	0.0686 (17)	-0.0036 (10)	-0.0039 (11)	0.0095 (12)
02	0.0285 (12)	0.0425 (14)	0.091 (2)	-0.0015 (10)	-0.0121 (13)	0.0221 (14)
03	0.067 (2)	0.070 (3)	0.241 (7)	0.014 (2)	-0.018 (3)	-0.067 (4)
O4	0.0435 (17)	0.094 (3)	0.205 (6)	0.0008 (19)	-0.016 (3)	-0.055 (3)
05	0.103 (3)	0.213 (6)	0.061 (2)	-0.050 (4)	0.017 (2)	-0.028 (3)
06	0.121 (3)	0.0484 (15)	0.0577 (17)	0.006 (2)	0.017 (2)	-0.0105 (14)
N1	0.0310 (12)	0.0337 (13)	0.0347 (12)	0.0004 (10)	-0.0024 (10)	-0.0021 (10)
N2	0.0364 (15)	0.0459 (16)	0.0528 (17)	0.0022 (13)	0.0005 (13)	-0.0137 (14)
N3	0.0346 (15)	0.0485 (17)	0.076 (2)	-0.0008 (13)	-0.0013 (16)	-0.0241 (17)
N4	0.0336 (15)	0.0494 (18)	0.073 (2)	0.0035 (13)	-0.0012 (15)	-0.0241 (17)
C1	0.0281 (14)	0.0341 (14)	0.0396 (15)	0.0023 (12)	0.0025 (12)	0.0055 (12)
C2	0.0214 (11)	0.0297 (13)	0.0377 (15)	0.0021 (10)	0.0025 (11)	0.0017 (12)
C3	0.0285 (13)	0.0346 (15)	0.0364 (14)	0.0024 (12)	0.0006 (12)	0.0001 (12)
C4	0.0299 (15)	0.0458 (17)	0.0421 (17)	-0.0007 (13)	0.0029 (13)	-0.0074 (14)
C5	0.0439 (18)	0.0385 (16)	0.0401 (17)	-0.0027 (14)	0.0093 (15)	-0.0078 (13)
C6	0.0355 (17)	0.0437 (18)	0.0406 (17)	-0.0023 (14)	0.0059 (14)	-0.0087 (14)
C7	0.118 (6)	0.072 (4)	0.111 (5)	-0.010 (4)	0.000 (4)	0.032 (3)
C8	0.153 (7)	0.057 (3)	0.084 (4)	0.005 (4)	0.022 (4)	0.002 (3)

Geometric parameters (Å, °)

S1—O4	1.399 (4)	N4—H4B	0.8600
S1—O6	1.421 (3)	C1—C2	1.533 (4)
S1—O5	1.468 (5)	C2—C3	1.527 (4)
S1—O3	1.571 (4)	С2—Н1	0.9800
O1—C1	1.255 (4)	C3—C4	1.526 (4)
O2—C1	1.244 (4)	С3—НЗС	0.9700
O3—C7	1.426 (7)	C3—H3D	0.9700
N1—C2	1.490 (4)	C4—C5	1.524 (5)
N1—H1A	0.8900	C4—H4C	0.9700
N1—H1B	0.8900	C4—H4D	0.9700
N1—H1C	0.8900	C5—H5A	0.9700
N2—C6	1.322 (5)	С5—Н5В	0.9700
N2—C5	1.453 (5)	C7—C8	1.467 (9)
N2—H2	0.8600	C7—H7A	0.9700
N3—C6	1.326 (5)	С7—Н7В	0.9700
N3—H3A	0.8600	C8—H8A	0.9600
N3—H3B	0.8600	C8—H8B	0.9600

N4—C6	1.321 (5)	C8—H8C	0.9600
N4—H4A	0.8600		
O4—S1—O6	120.9 (3)	С4—С3—Н3С	108.4
O4—S1—O5	110.3 (3)	С2—С3—Н3С	108.4
O6—S1—O5	108.7 (3)	C4—C3—H3D	108.4
O4—S1—O3	111.3 (3)	C2—C3—H3D	108.4
O6—S1—O3	105.0 (3)	H3C—C3—H3D	107.5
O5—S1—O3	98.2 (4)	C5—C4—C3	111.2 (3)
C7—O3—S1	119.5 (4)	C5—C4—H4C	109.4
C2—N1—H1A	109.5	C3—C4—H4C	109.4
C2—N1—H1B	109.5	C5—C4—H4D	109.4
H1A—N1—H1B	109.5	C3—C4—H4D	109.4
C2—N1—H1C	109.5	H4C—C4—H4D	108.0
H1A—N1—H1C	109.5	N2C5C4	114.1 (3)
H1B—N1—H1C	109.5	N2—C5—H5A	108.7
C6—N2—C5	125.1 (3)	C4—C5—H5A	108.7
C6—N2—H2	117.5	N2—C5—H5B	108.7
C5—N2—H2	117.5	C4—C5—H5B	108.7
C6—N3—H3A	120.0	H5A—C5—H5B	107.6
C6—N3—H3B	120.0	N4—C6—N2	122.1 (3)
H3A—N3—H3B	120.0	N4—C6—N3	118.5 (3)
C6—N4—H4A	120.0	N2—C6—N3	119.4 (3)
C6—N4—H4B	120.0	O3—C7—C8	108.1 (6)
H4A—N4—H4B	120.0	O3—C7—H7A	110.1
O2—C1—O1	126.3 (3)	С8—С7—Н7А	110.1
O2—C1—C2	117.1 (3)	O3—C7—H7B	110.1
O1—C1—C2	116.6 (3)	С8—С7—Н7В	110.1
N1—C2—C3	110.9 (2)	H7A—C7—H7B	108.4
N1—C2—C1	109.3 (2)	С7—С8—Н8А	109.5
C3—C2—C1	111.0 (3)	С7—С8—Н8В	109.5
N1—C2—H1	108.5	H8A—C8—H8B	109.5
С3—С2—Н1	108.5	С7—С8—Н8С	109.5
C1—C2—H1	108.5	H8A—C8—H8C	109.5
C4—C3—C2	115.3 (3)	H8B—C8—H8C	109.5
O4—S1—O3—C7	-25.9 (8)	C1—C2—C3—C4	-63.9 (3)
O6—S1—O3—C7	106.5 (6)	C2—C3—C4—C5	178.5 (3)
O5—S1—O3—C7	-141.5 (6)	C6—N2—C5—C4	-89.4 (4)
O2—C1—C2—N1	-19.4 (4)	C3—C4—C5—N2	-67.5 (4)
O1—C1—C2—N1	162.5 (3)	C5—N2—C6—N4	4.4 (6)
O2—C1—C2—C3	103.2 (4)	C5—N2—C6—N3	-173.9 (3)
O1—C1—C2—C3	-74.9 (4)	S1—O3—C7—C8	-178.3 (5)
N1-C2-C3-C4	57.9 (4)		
Hydrogen-bond geometry (Å, °)			

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	$D -\!\!\!-\!\!\!\!-\!\!\!\!\!\!\!\!\!-\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$
N1—H1B···O5	0.89	1.94	2.823 (5)	173
N1—H1C···O6 ⁱ	0.89	2.01	2.896 (4)	172

N1—H1A····O1 ⁱⁱ	0.89	1.97	2.786 (4)	152
N2—H2···O3 ⁱⁱⁱ	0.86	2.25	3.098 (6)	170
N3—H3B····O6 ⁱⁱⁱ	0.86	2.35	3.196 (5)	167
N3—H3A····O2 ^{iv}	0.86	1.93	2.771 (4)	165
N4—H4B…O1 ^{iv}	0.86	2.00	2.847 (4)	170
N4—H4A····O4 ⁱⁱ	0.86	2.11	2.945 (5)	165

Symmetry codes: (i) -x+1/2, -y+2, z-1/2; (ii) x+1/2, -y+3/2, -z+1; (iii) x-1/2, -y+3/2, -z+1; (iv) -x+1/2, -y+1, z-1/2.

Fig. 1